Space Simulator  1.0.9
space flight simulator

Apollo SpaceCraft


The Saturn V was the most powerful rocket ever designed by NASA in the 60s to take humans to the Moon for the first time.


The Saturn V (spoken as "Saturn five") was an American human-rated expendable rocket used by NASA between 1967 and 1973. The three-stage liquid-fueled super heavy-lift launch vehicle was developed to support the Apollo program for human exploration of the Moon and was later used to launch Skylab, the first American space station. The Saturn V was launched 13 times from the Kennedy Space Center in Florida with no loss of crew or payload. As of 2017, the Saturn V remains the tallest, heaviest, and most powerful (highest total impulse) rocket ever brought to operational status, and holds records for the heaviest payload launched and largest payload capacity to low Earth orbit (LEO) of 140,000 kg (310,000 lb), which included the third stage and unburned propellant needed to send the Apollo Command/Service Module and Lunar Module to the Moon. The largest production model of the Saturn family of rockets, the Saturn V was designed under the direction of Wernher von Braun and Arthur Rudolph at the Marshall Space Flight Center in Huntsville, Alabama, with Boeing, North American Aviation, Douglas Aircraft Company, and IBM as the lead contractors. To date, the Saturn V remains the only launch vehicle to launch missions to carry humans beyond low Earth orbit. A total of 15 flight-capable vehicles were built, but only 13 were flown. An additional three vehicles were built for ground testing purposes. A total of 24 astronauts were launched to the Moon, three of them twice, in the four years spanning December 1968 through December 1972. Saturn V refers to the rocket vehicle as a whole. It is formed by the Launch Vehicle (LV) and the Apollo SpaceCraft commonly refered as the CSM.

Apollo's Launch Vehicle



The purpose of the first stage is to lift the Apollo/Saturn V off the launch pad and carry it to an altitude of 38 miles and a speed of 6000 miles per hour. The empty fuel tank is discarded. Fuelled with jet fuel/diesel and liquid oxygen, the 5 F-1 rockets are still the largest liquid fuelled rocket engines ever made. The S-IC was built by the Boeing Company at the Michoud Assembly Facility, New Orleans, where the Space Shuttle External Tanks would later be built by Lockheed Martin. Most of its mass at launch was propellant, RP-1 fuel with liquid oxygen as the oxidizer. It was 138 feet (42m) tall and 33 feet (10m) in diameter, and provided over 7,600,000 pounds-force (34,000 kN) of thrust. The S-IC stage had a dry weight of about 289,000 pounds (131 metric tons) and fully fueled at launch had a total weight of 5,100,000 pounds (2,300 metric tons). It was powered by five Rocketdyne F-1 engines arrayed in a quincunx (five units, with four arranged in a square, and the fifth in the center) The center engine was held in a fixed position, while the four outer engines could be hydraulically turned (gimballed) to steer the rocket. In flight, the center engine was turned off about 26 seconds earlier than the outboard engines to limit acceleration. During launch, the S-IC fired its engines for 168 seconds (ignition occurred about 8.9 seconds before liftoff) and at engine cutoff, the vehicle was at an altitude of about 36 nautical miles (67 km), was downrange about 50 nautical miles (93 km), and was moving about 7,500 feet per second (2,300 m/s).


Stage two took the spacecraft to just below Earth orbit and discarded. Fuelled by liqyud hydrogen and oxygen, it made the better part of the lifting to Earth Orbit. The five J-2 rockets, amongth the most efficient rocket engines ever made, were started well outside the atmosphere, above 50km, so they could be finetuned to space environment. The S-II was built by North American Aviation at Seal Beach, California. Using liquid hydrogen and liquid oxygen, it had five Rocketdyne J-2 engines in a similar arrangement to the S-IC, also using the outer engines for control. The S-II was 81 feet 7 inches (24.87 m) tall with a diameter of 33 feet (10 m), identical to the S-IC, and thus was the largest cryogenic stage until the launch of the Space Shuttle in 1981. The S-II had a dry weight of about 80,000 pounds (36,000 kg) and fully fueled, weighed 1,060,000 pounds (480,000 kg). The second stage accelerated the Saturn V through the upper atmosphere with 1,100,000 pounds-force (4,900 kN) of thrust in vacuum. When loaded, significantly more than 90 percent of the mass of the stage was propellant; however, the ultra-lightweight design had led to two failures in structural testing. Instead of having an intertank structure to separate the two fuel tanks as was done in the S-IC, the S-II used a common bulkhead that was constructed from both the top of the LOX tank and bottom of the LH2 tank. It consisted of two aluminum sheets separated by a honeycomb structure made of phenolic resin. This bulkhead had to insulate against the 126 °F (70 °C) temperature gradient between the two tanks. The use of a common bulkhead saved 7,900 pounds (3.6 t). Like the S-IC, the S-II was transported from its manufacturing plant to the Cape by sea.


The 3rd stage (also known as S-IVB) had a dual purpose :

  • To finish lifting the Apollo Spacecraft, etc.. to Earth parking orbit
  • To perform a second firing of the single J-2 engine to help the Apollo stack to achieve trans lunar injection, that is, propel the spacecraft to an orbit high enough that can be trapped by the moon's gravity.

The S-IVB was built by the Douglas Aircraft Company at Huntington Beach, California. It had one J-2 engine and used the same fuel as the S-II. The S-IVB used a common bulkhead to separate the two tanks. It was 58 feet 7 inches (17.86 m) tall with a diameter of 21 feet 8 inches (6.604m) and was also designed with high mass efficiency, though not quite as aggressively as the S-II. The S-IVB had a dry weight of about 23,000 pounds (10,000 kg) and, fully fueled, weighed about 262,000 pounds (119,000 kg). The S-IVB-500 model used on the Saturn V differed from the S-IVB-200 used as the second stage of the Saturn IB, in that the engine was restartable once per mission. This was necessary as the stage would be used twice during a lunar mission: first in a 2.5 min burn for the orbit insertion after second stage cutoff, and later for the trans-lunar injection (TLI) burn, lasting about 6 min. Two liquid-fueled Auxiliary Propulsion System (APS) units mounted at the aft end of the stage were used for attitude control during the parking orbit and the trans-lunar phases of the mission. The two APSs were also used as ullage engines to settle the propellants in the aft tank engine feed lines prior to the trans-lunar injection burn.

Apollo SpaceCraft

Service Module:


The big chunk of the Apollo spacecraft provides propulsion, rotation, electricity, power, water, etc. The entire module is discarded prior to reentry.

Command Module:


The only part of the spacecraft to return to Earth houses the Astronauts and a few equipment critical for reentry.

Due to the tremendous complexity of the controls of the Apollo Spacecraft, we have divided into functional sections ie : Service Engine or Electrical Subsystem. However, those systems are deeply interconnected, so be sure to read all the control documentation to understand the whole of the sub-systems controls and instruments.

The Command Module was a truncated cone (frustum) 10 feet 7 inches (3.23 m) tall with a diameter of 12 feet 10 inches (3.91 m) across the base. The forward compartment contained two reaction control engines, the docking tunnel, and the components of the Earth Landing System. The inner pressure vessel housed the crew accommodations, equipment bays, controls and displays, and many spacecraft systems. The last section, the aft compartment, contained 10 reaction control engines and their related propellant tanks, fresh water tanks, and the CSM umbilical cables.

ApolloSpaceCraftControls Apollo Controls